RELIABILITY OF WAVE ENERGY CONVERTERS – CALIBRATION OF FATIGUE DESIGN FACTORS

3RD SDWED SYMPOSIUM

Simon Ambühl
PhD student
Loads on the Structure

Fatigue loads are of importance for wave energy convertors.
What is ‘Fatigue Design Factor’ (FDF)?

- For fatigue processes, **time** is of importance and drives the process.
- FDF defines the **safety factor**, which is related to life-time.

Definition of FDF:

\[
FDF = \frac{T_{FAT}}{T_{Life}}
\]

- Using a linear SN-curve:

\[
FDF = (\gamma_m \gamma_f)^m
\]

- Safety factors are dependent on:
 - **Uncertainty** in fatigue **loads**
 - **Uncertainty** in fatigue **strength**
 - **Consequences** in case of failure
 - **Inspections** performed: Yes/No
 - The **complexity** how loads are estimated (e.g. static/dynamic load estimation).

\(T_{Life}\) Real life-time of device (e.g. 20 years)

\(T_{FAT}\) Life-time used for the structural design (e.g. 60 years)

\(\gamma_m\) Partial safety factor for fatigue strength

\(\gamma_f\) Partial safety factor for fatigue load

\(m\) SN-curve parameter (between 3 and 5)
How to measure/model Fatigue? (I)

- Weakening of material caused by repeatedly applied loads.
- Physical explanation: evolution of cracks which weaken the structure (time-dependent process).

- Miner’s Rule:

\[
D = \sum n_i / N_i
\]

\[
N_i = K (\Delta s)^{-m}
\]

\[
\Delta s_i = \frac{\Delta F_i}{A}
\]

\[
\text{example}\]

Failure: \(D \geq 1 \)

No Failure: \(D < 1 \)

\(n_i \) Number of cycles given certain load range during life-time

\(N_i \) Number of cycles to failure given certain load range

\(K, m \) SN-curve parameters

\(\Delta s_i \) Stress range

\(\Delta F_i \) Load range

\(A \) Cross-section area
How to measure/model Fatigue? (II)

- **SN-curve:**
 - consider number N of cycles for a certain stress amplitude Δs leading to failure ($D=1$).
 - SN-curve often shown in Loglog scale plots.
 - Example with one linear and two bilinear SN-curves:

![SN Curves for different Environments (SN Curve F; t=50mm)](image)
How to measure/model Fatigue? (III)

- Fracture Mechanics (1-dimensional):

\[\frac{da}{dN} = C \left(\Delta K(a) \right)^m \]

\[\Delta K(a) = Y \Delta \sigma_e \sqrt{\pi a} \]

\[\frac{a}{2c} = f \left(\frac{a}{T} \right) \]

Failure: \(a(t) = T \)

Assumption: Repair of crack when crack is found at an inspection.

- Alternatively: 2-dimensional crack growth model
Probability of Detection (PoD)

• When performing an inspection, the smallest detectable crack is dependant on the inspection method.

• During inspections not all cracks might be detected:

\[\text{PoD} = P(c, \text{inspection method}) \]

• Inspection methods:
 • Magnetic particle inspection (MPI)
 • Eddy current
 • Visual inspection
Summary of Fatigue Modelling used for FDF Calibration

Consideration of inspections

- NO: SN-curves and Miner’s rule
- YES: Fracture mechanics model
Probabilistic Reliability Assessment (I)

• Probability of failure can be obtained by using e.g. First Order Reliability Methods (FORM):

\[P_F = P(g \leq 0) \]

• Reliability index defined as:

\[\beta = -\Phi^{-1}(P_F) \]

\(\Phi(\cdot) \) is the standardized normal distribution

• Relation between probability of failure and reliability index:

<table>
<thead>
<tr>
<th></th>
<th>10^{-5}</th>
<th>10^{-4}</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_F)</td>
<td>4.3</td>
<td>3.7</td>
<td>3.1</td>
<td>2.3</td>
</tr>
<tr>
<td>(\beta)</td>
<td>10^{-5}</td>
<td>10^{-4}</td>
<td>10^{-3}</td>
<td>10^{-2}</td>
</tr>
</tbody>
</table>
Probabilistic Reliability Assessment (II)

- Probabilistic reliability assessments consider uncertainties as **stochastic variables**.

- Stochastic modelling of uncertainties:
 - Physical uncertainties
 - Modelling uncertainties
 - Statistical uncertainties
 - Measurement uncertainties
Calibration Principle

- A combination of deterministic and probabilistic calculations can be used in order to assess the reliability of a design and calibrate FDF values (or equivalent partial safety factors) fulfilling a certain reliability index.
Example: Wavestar Device

- Wavestar is chosen because
 - Hydrodynamic in-house code available (Load time-series provided by WP4).
 - Estimation of model uncertainty based on wave tank tests.
- Focus on welded detail between PTO and Floater:
Required FDF values

<table>
<thead>
<tr>
<th>Inspection strategy</th>
<th>Annual rel. index $\Delta \beta$</th>
<th>Time interval (years)</th>
<th>Number of inspections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Eddy current</td>
<td>3.1 3.7</td>
<td>3.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>visual (50 mm)</td>
<td>3.1 3.7</td>
<td>3.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>visual (10 mm)</td>
<td>3.1 3.7</td>
<td>3.3</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>6.2</td>
</tr>
<tr>
<td>MPI</td>
<td>3.1 3.7</td>
<td>3.3</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Resulting required FDF values are decreased when implementing inspections.

Resulting required FDF values are in the range between 1 and 6.5.
Comparison with nearby industries

- Comparison of required FDF values used in offshore wind turbine standards as well as for steel structures used in oil and gas industry.

<table>
<thead>
<tr>
<th>Failure critical detail</th>
<th>Inspections</th>
<th>Offshore wind turbines</th>
<th>Oil and Gas[^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

[^1]: DNV-OS-J101: Design of offshore wind turbines
[^2]: DNV-OS-J103: Design of floating wind turbine structures
[^3]: ISO 19902 Petroleum and Natural Gas Industries – Fixed steel offshore structures
Conclusions

• Fatigue is modelled using a SN-curve and Miner’s rule (no inspections) as well as Facture mechanics (inspections implemented).

• The Wavestar example showed that FDF values can be reduced from 6.5 (no inspections) to 1 (annual inspection actions).

• Resulting required FDF values are in the range as proposed for floating wind turbines (DNV-OS-J103).

• Focus only on one working principle/device. In order to give recommendations for standards, more examples need to be considered.
Thank you very much for your attention!
The International Research Alliance

SDWED
Structural Design of Wave Energy Devices

Funded by Danish Agency for Science Technology and Innovation